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WHAT’S IN THIS BULLETIN 
 
This Technical Bulletin discusses the definition and composition of rhizodeposits and their benefits and 
quantification. It also looks into the benefit of foliar-induced humic substances (HS) versus the cost of 
imported HS. 
 
 
DEFINITION AND COMPOSITION OF RHIZODEPOSITS 
 
Rhizodeposits refer to all the materials lost from plant roots, they are placed in the following groups: 
 

1. Water-soluble organic exudates: 
These include organic acids, amino acids, fatty acids, sugars and sugar-phosphates. These 
compounds are exudated passively or actively from living plant roots and are rapidly taken up and 
metabolized by rhizosphere microorganisms; thereby providing soil microorganisms with carbon 
and energy for their growth and reproduction, eventually resulting in HS.  
 

2. Large particles and polymeric organic molecules:   
These are constituents derived from plant roots or autolysis of root cells, they include sloughed 
cells, root hairs, fine roots and lysates. Lysates result from autolysis (breakdown) of root cells and 
include Mucilage, polysaccharides, polyphenols, proteins and enzymes. 

 
3. Inorganic nutrients such as phosphate, potassium, sodium, bicarbonate (CO3H-) and proton (H+) 

that are lost from roots passively or actively. 
 

4. Gases such as ethylene and Carbon Dioxide (CO2), the latter a product of root respiration. 
 
 
BENEFITS OF RHIZODEPOSITS 
 
Rhizodeposits have the following benefits: 
 

(a) Contribution to soil organic matter and Humic Substances:  
Humic substances (HS) are polymers of phenolic substances with free radicals, (Jörg Gerke, 2018, 
MDPI Agronomy) they have a unique ability to incorporate a variety of organic and inorganic 
molecules and elements, including amino acids, peptides, sugars, lignin fragments, pesticides  
and surfactants. 
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Humic substances have important physical and chemical functions in soil, among them a high 
Water-holding capacity, a high cation exchange capacity, and the ability to adsorb or complex 
cationic nutrients such as K+, Ca2+, Fe (III), and Cu (II), and to immobilize heavy metals such as 
lead and Cd, increasing the availability of Phosphate in soil. Thus, HS are the major components of 
soil organic matter that form water‐soluble and water‐insoluble complexes with metal ions and 
hydrous oxides in soil. 
 

(b) Feeding soil microbiota:  
Benefits of rhizodeposits in survival and reproduction of  soil bacteria is better appreciated when we 
realize that about half of gross photosynthetic products(GPP) that are transported to underground 
plant parts is lost as Rhizodeposits. 
 

(c) Keeping soils moist:  
Mucilage and various polysaccharides facilitates water and nutrient movement especially in dry 
conditions (Zarebanadkouki et al 2019). Mucilage secretion in root tips eases root penetration and 
elongation in soil. 

 
(d) Exclusion of pathogenic organisms from root zone:  

Various chemoattractants and poisons are exuded from plant roots; these include benzoxazinoids 
(BXZ), malic acid, and flavonoids that attract plant-beneficial rhizobacteria to the root, or reduce 
pathogens due to their toxicity. A single BXZ produced in maize and wheat can be toxic, repelling, 
or attractive, depending on the particular species. (MDPI Agronomy 2018, 8, 143; doi: 
10.3390/agronomy8080143). 

Some beneficial bacteria such as Bacillus subtilis, Agrobacterium, Arthrobacter, Azotobacter, 
Azospirillum, Bacillus, Burkholderia, Erwinia and nitrogen-fixing bacteria (that colonize roots) 
exclude pathogens from the root. 

 
(e) Increased nodulation and mycorrhizal association  

Plant Growth Promoting Rhizobacteria (PGPR) also induce rhizobia and nodule formation in legumes 
and stimulate mycorrhizal symbiosis in plant roots. 
 

(f) Increasing plant resistance to abiotic stresses such as cold, heat, drought and salinity  
X-F Huang (dx.doi.org/10.1139/cjb-2013-0225) reviewed a number of soil microbes that are able 
to alleviate plant stress responses by lowering plant ethylene levels thus increasing the plant ability 
to resist diseases and abiotic stresses such as drought and salinity.  

Ethylene is a plant hormone that generally functions as anti-auxin; thus, lowering level of ethylene 
allows normal plant growth to proceed. 

 
 
 

QUANTIFICATION OF RHIZODEPOSITS 
 
Dozens of publications have dealt with Rhizodeposit quantification in the laboratory using sterile 
conditions and radioisotopes such as C14, C13 and P32 in order to trace carbon and organic compounds 
formed in photosynthesis and separate these from pre-existing similar molecules. The use of different 
carbon isotopes has been essential in sorting out the three sources of CO2, namely a) root respiration; b) 
microbial respiration using exudates and c) microbial respiration using original (pre-existing) carbon 
source in soil.  
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Differences in soil type, plant species, plant growth stage and plant age that affect variation of 
rhizodeposits along the root length result in large variations in such rhizodeposit measurements to be 
between 30 and 90 percent of the carbon transferred to the belowground plant parts. 
 
In young plants of wheat or pasture grasses, 20 to 50 percent of GPP is transferred to belowground 
components; half of which (10% to 25% of GPP) is estimated to be released as soluble organic exudates 
(Cheng and Gershenson, in The Rhizosphere, Science Direct, 2007). 
 
The result of 43 articles reviewed by Christophe Nguyen (September 2009, DOI*: 10.1007/978-90-481-
2666-8_9) showed that on average 17% of GPP was lost as rhizodeposits (12% recovered as rhizosphere 
respiration and 5% as soil residues.) 
 
The review of 281 data sets by Pausch and Kuzyakov in 2017 https://doi.org/10.1111/gcb.13850  showed 
that grasses allocated 12% more carbon to below ground than crops. 
 
Fewer researchers have quantified rhizodeposits in field; but importantly, often in studies that continued 
for many crop cycles (e.g. Wang et al 2017; and Zhu et al 2020). Such published field trials show similar or 
higher percentages of rhizodeposits (17% of GPP or more) that was observed under laboratory conditions 
using radioisotopes.  
 
It is therefore reasonable to assume that short-term laboratory studies and long-term field 
measurements conclude that the organic exudates of roots (referred to as rhizodeposits) is 17% of 
GPP in annual crops and 20% of GPP in permanent crops and pastures. 
 
 
 
 

BENEFIT OF FOLIAR-INDUCED HS VERSUS COST OF IMPORTED HS 
 
It has been estimated that 65 to 75% of the organic matter in soils consists of HS, that is, humic acid, fulvic 
acid, and humin (M. Shnitzer 1983 https://doi.org/10.2134/agronmonogr9.2.2ed.c30 Agronomy 
Monographs). The remainder is primarily composed of various polysaccharides and protein- 
like substances.  
 
Considering the cropping and pasture soils have 1% organic matter in the top 0-10cm and assuming a soil 
density of 1, the organic matter in the top 10cm of soil per hectare is 0.01 X 1000,000kg or 10,000kg or 
10t/ha. At 65% HS, the 0-10cm of soil has 10t X 0.65 = 6.5t/ha of HS. This quantity of HS is 
underestimated since most soils have a bulk density higher than 1. 
 
It is therefore a waste of money to buy and import HS into a farm given that most soils have at least 6500 
kg/ha of HS for every 1% of soil organic matter at 0-10cm profile, to which is added with every crop cycle 
some 20% of GPP/ha. 
 
Martin and Merckx 1992 (https://doi.org/10.1016/0038-0717(92)90065-6) showed that some 38 to 42% 
of radioactive carbon was fixed under wheat crop in 63 days as HS and humin free from carbohydrates and 
protein; therefore, HS and Humin are formed by bacterial acting on rhizodeposits during one crop cycle, 
there are published work showing this conversion can occur over a week or two. 
 
 
 

https://doi.org/10.1111/gcb.13850
https://doi.org/10.2134/agronmonogr9.2.2ed.c30
https://doi.org/10.1016/0038-0717(92)90065-6)
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I have recently calculated the annual, in-home production of humic substances under a vineyard in Griffith 
yielding 14t/ha and compared it with the actual money spent on RLF Viticulture plus vs the cost of 
imported Humic Substances by the grower. The following steps can be used for any annual or perennial 
crop to calculate seasonal production of HS using harvest index (HI) of the particular crop and yield 
increase by RLF foliar fertiliser that is well documented by replicated independent trial to be around 10% in 
field crops, pastures, viticulture and horticulture. 
 
The steps that I used for Griffith vineyard below can be applied to other crops using specific parameters of 
the chosen crop. 
 

1. The grape yield of Griffith was 14t/h, at 25% HI, this is equal to 14/25*100 = 56t fresh matter/ha 
per season as GPP. 

2. Calculate the dry matter equivalent of 56t fresh matter assuming 80% water and 20% dry matter, 
this comes to 56 X 0.20 = 11.2t/ha GPP. 

3. Calculate Rhizodeposits at 20% GPP which is 11.2 X 0.20 = 2.24t/ha of dry matter. 

4. Assuming RLF program increases yield by 10%,( as observed in Shiraz trial in Barossa by Dr Michael 
McCarthy),  then extra exudate produced is 2.24 X 0.10 = 0.224t/ha or 224kg extra exudate. 

5. Take HS to be 40% of the exudate, this comes to 0.40 X 224 = 89.6kg HS/ha 

6. Calculate the equivalent litre of humic substances that farmer purchased at 12.5% (W/V) HS or 125 
grams/L, or 0.125kg/L which is 89.6/0.125kg = 716.8 litre of HS. 

7. Calculate the value of 716.8 litre of HS in $A assuming $10.00/L which comes to 716.8 X $10 = 
$7168 

8. Deduct the cost of RLF program from the value found at No 7 above, the result is the farmer loss 
had he used his standard practice + RLF foliar rather than his standard practice+ HS. The cost of 3 
foliar sprays of RLF each at 5L/ha is around $150.00 per ha, the net loss of farmer buying this 
amount of HS is $7168-$150 = $7018.  

9. The cost of 10% extra grape yield (1.4t/ha of grape) and any loss in grape quality seen in Barossa 
trial should be added to the $7018 to get the total loss per hectare. 

 

Abbreviations used: 
 

*DOI    Stands for Digital Object Identifier 

HS    Stands for Humic Substances 

GPP    Stands for Gross Photosynthetic Production  

NPP   Stands for Net Photosynthetic Production (GPP minus respiration). 

Rhizodeposit Total products derived from living plant roots. Rhizodeposit In quantitative 
studies (as described in this article) refers to water-soluble organic molecules 
exuded from living root passively or actively. 
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